Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
STAR Protoc ; 4(1): 102095, 2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2240517

ABSTRACT

Conventional methods of measuring affinity are limited by artificial immobilization, large sample volumes, and homogeneous solutions. This protocol describes microfluidic antibody affinity profiling on complex human samples in solution to obtain a fingerprint reflecting both affinity and active concentration of the target protein. To illustrate the protocol, we analyze the antibody response in SARS-CoV-2 omicron-naïve samples against different SARS-CoV-2 variants of concern. However, the protocol and the technology are amenable to a broad spectrum of biomedical questions. For complete details on the use and execution of this protocol, please refer to Emmenegger et al. (2022),1 Schneider et al. (2022),2 and Fiedler et al. (2022).3.

2.
Sci Rep ; 12(1): 19791, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2119245

ABSTRACT

The effectiveness of therapeutic monoclonal antibodies (mAbs) against variants of the SARS-CoV-2 virus is highly variable. As target recognition of mAbs relies on tight binding affinity, we assessed the affinities of five therapeutic mAbs to the receptor binding domain (RBD) of wild type (A), Delta (B.1.617.2), and Omicron BA.1 SARS-CoV-2 (B.1.1.529.1) spike using microfluidic diffusional sizing (MDS). Four therapeutic mAbs showed strongly reduced affinity to Omicron BA.1 RBD, whereas one (sotrovimab) was less impacted. These affinity reductions correlate with reduced antiviral activities suggesting that affinity could serve as a rapid indicator for activity before time-consuming virus neutralization assays are performed. We also compared the same mAbs to serological fingerprints (affinity and concentration) obtained by MDS of antibodies in sera of 65 convalescent individuals. The affinities of the therapeutic mAbs to wild type and Delta RBD were similar to the serum antibody response, indicating high antiviral activities. For Omicron BA.1 RBD, only sotrovimab retained affinities within the range of the serum antibody response, in agreement with high antiviral activity. These results suggest that serological fingerprints provide a route to evaluating affinity and antiviral activity of mAb drugs and could guide the development of new therapeutics.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Viral , Viral Envelope Proteins , Antiviral Agents/pharmacology , Membrane Glycoproteins/chemistry , SARS-CoV-2 , Antibodies, Monoclonal
3.
iScience ; 25(8): 104766, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1936590

ABSTRACT

The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination. Antibody affinity was similar against the wild-type, delta, and omicron variants (K A ranges: 122 ± 155, 159 ± 148, 211 ± 307 µM-1, respectively), indicating a surprisingly broad and mature cross-clade immune response. Postinfectious and vaccinated subjects showed different IgG profiles, with IgG3 (p-value = 0.002) against spike being more prominent in the former group. Lastly, we found that the ELISA titers correlated linearly with measured concentrations (R = 0.72) but not with affinity (R = 0.29). These findings suggest that the wild-type and delta spike induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination.

5.
ACS Infect Dis ; 8(4): 790-799, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1768765

ABSTRACT

Recent efforts in understanding the course and severity of SARS-CoV-2 infections have highlighted both potentially beneficial and detrimental effects of cross-reactive antibodies derived from memory immunity. Specifically, due to a significant degree of sequence similarity between SARS-CoV-2 and other members of the coronavirus family, memory B-cells that emerged from previous infections with endemic human coronaviruses (HCoVs) could be reactivated upon encountering the newly emerged SARS-CoV-2, thus prompting the production of cross-reactive antibodies. Determining the affinity and concentration of these potentially cross-reactive antibodies to the new SARS-CoV-2 antigens is therefore particularly important when assessing both existing immunity against common HCoVs and adverse effects like antibody-dependent enhancement (ADE) in COVID-19. However, these two fundamental parameters cannot easily be disentangled by surface-based assays like enzyme-linked immunosorbent assays (ELISAs), which are routinely used to assess cross-reactivity. Here, we have used microfluidic antibody affinity profiling (MAAP) to quantitatively evaluate the humoral immune response in COVID-19 convalescent patients by determining both antibody affinity and concentration against spike antigens of SARS-CoV-2 directly in nine convalescent COVID-19 patient and three pre-pandemic sera that were seropositive for common HCoVs. All 12 sera contained low concentrations of high-affinity antibodies against spike antigens of HCoV-NL63 and HCoV-HKU1, indicative of past exposure to these pathogens, while the affinity against the SARS-CoV-2 spike protein was lower. These results suggest that cross-reactivity as a consequence of memory reactivation upon an acute SARS-CoV-2 infection may not be a significant factor in generating immunity against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Affinity , Humans , Microfluidics , Spike Glycoprotein, Coronavirus
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1713295

ABSTRACT

An increased incidence of chilblains has been observed during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and attributed to viral infection. Direct evidence of this relationship has been limited, however, as most cases do not have molecular evidence of prior SARS-CoV-2 infection with PCR or antibodies. We enrolled a cohort of 23 patients who were diagnosed and managed as having SARS-CoV-2-associated skin eruptions (including 21 pandemic chilblains [PC]) during the first wave of the pandemic in Connecticut. Antibody responses were determined through endpoint titration enzyme-linked immunosorbent assay and serum epitope repertoire analysis. T cell responses to SARS-CoV-2 were assessed by T cell receptor sequencing and in vitro SARS-CoV-2 antigen-specific peptide stimulation assays. Immunohistochemical and PCR studies of PC biopsies and tissue microarrays for evidence of SARS-CoV-2 were performed. Among patients diagnosed and managed as "covid toes" during the pandemic, we find a percentage of prior SARS-CoV-2 infection (9.5%) that approximates background seroprevalence (8.5%) at the time. Immunohistochemistry studies suggest that SARS-CoV-2 staining in PC biopsies may not be from SARS-CoV-2. Our results do not support SARS-CoV-2 as the causative agent of pandemic chilblains; however, our study does not exclude the possibility of SARS-CoV-2 seronegative abortive infections.


Subject(s)
COVID-19/complications , Chilblains/immunology , Adult , COVID-19/epidemiology , Chilblains/epidemiology , Chilblains/virology , Connecticut/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Young Adult
8.
PLoS Pathog ; 17(12): e1010118, 2021 12.
Article in English | MEDLINE | ID: covidwho-1551308

ABSTRACT

Antiphospholipid antibodies (aPL), assumed to cause antiphospholipid syndrome (APS), are notorious for their heterogeneity in targeting phospholipids and phospholipid-binding proteins. The persistent presence of Lupus anticoagulant and/or aPL against cardiolipin and/or ß2-glycoprotein I have been shown to be independent risk factors for vascular thrombosis and pregnancy morbidity in APS. aPL production is thought to be triggered by-among other factors-viral infections, though infection-associated aPL have mostly been considered non-pathogenic. Recently, the potential pathogenicity of infection-associated aPL has gained momentum since an increasing number of patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been described with coagulation abnormalities and hyperinflammation, together with the presence of aPL. Here, we present data from a multicentric, mixed-severity study including three cohorts of individuals who contracted SARS-CoV-2 as well as non-infected blood donors. We simultaneously measured 10 different criteria and non-criteria aPL (IgM and IgG) by using a line immunoassay. Further, IgG antibody response against three SARS-CoV-2 proteins was investigated using tripartite automated blood immunoassay technology. Our analyses revealed that selected non-criteria aPL were enriched concomitant to or after an infection with SARS-CoV-2. Linear mixed-effects models suggest an association of aPL with prothrombin (PT). The strength of the antibody response against SARS-CoV-2 was further influenced by SARS-CoV-2 disease severity and sex of the individuals. In conclusion, our study is the first to report an association between disease severity, anti-SARS-CoV-2 immunoreactivity, and aPL against PT in patients with SARS-CoV-2.


Subject(s)
Autoantibodies/blood , Immunoglobulin G/immunology , Prothrombin/immunology , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/immunology , Cell Communication/immunology , Humans , Risk Factors , Severity of Illness Index
9.
Life Sci Alliance ; 5(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1547941

ABSTRACT

The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, K d, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Microfluidics/methods , SARS-CoV-2/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/immunology , Antibody Affinity , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/blood , COVID-19/etiology , Cross Reactions , Female , Humans , Male , Middle Aged , Severity of Illness Index , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Surface Plasmon Resonance
10.
Clin Microbiol Infect ; 27(7): 987-992, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1220813

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is being extensively investigated as a treatment, with mixed results to date. Overall, there has been a generalized lack of appropriateness in prescriptions, which, in the field of transfusion medicine, is termed patient-blood management. OBJECTIVES: We aimed to separate study design variables that could affect clinical outcome after CCP therapy. We focus here on variables such as pretransfusion antibody testing in recipients, dose adjustments and antibody affinity measurements. SOURCES: We searched PubMed and preprint servers for relevant preclinical and clinical studies discussing each of these variables in the field of CCP therapy. CONTENT: We show evidence that neglecting those variables has affected the outcomes of the vast majority of CCP clinical trials to date. IMPLICATIONS: A better understanding of such variables will improve the design of the next generation of CCP clinical trials. This will likely lead to better clinical outcomes and will minimize risks of immune evasion from subneutralizing doses of neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/therapy , Antibodies, Viral/immunology , Blood Donors , Dose-Response Relationship, Immunologic , Economics, Pharmaceutical , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Severity of Illness Index , Treatment Outcome , COVID-19 Serotherapy
11.
ACS Infect Dis ; 7(8): 2362-2369, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1193571

ABSTRACT

The humoral immune response plays a key role in suppressing the pathogenesis of SARS-CoV-2. The molecular determinants underlying the neutralization of the virus remain, however, incompletely understood. Here, we show that the ability of antibodies to disrupt the binding of the viral spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell, the key molecular event initiating SARS-CoV-2 entry into host cells, is controlled by the affinity of these antibodies to the viral antigen. By using microfluidic antibody-affinity profiling, we were able to quantify the serum-antibody mediated inhibition of ACE2-spike binding in two SARS-CoV-2 seropositive individuals. Measurements to determine the affinity, concentration, and neutralization potential of antibodies were performed directly in human serum. Using this approach, we demonstrate that the level of inhibition in both samples can be quantitatively described using the dissociation constants (KD) of the binary interactions between the ACE2 receptor and the spike protein as well as the spike protein and the neutralizing antibody. These experiments represent a new type of in-solution receptor binding competition assay, which has further potential applications, ranging from decisions on donor selection for convalescent plasma therapy, to identification of lead candidates in therapeutic antibody development, and vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibody Affinity , COVID-19/therapy , Humans , Immunization, Passive , Peptidyl-Dipeptidase A/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
12.
Neuropathol Appl Neurobiol ; 47(3): 454-459, 2021 04.
Article in English | MEDLINE | ID: covidwho-947788

ABSTRACT

Coronavirus disease 19 (COVID-19) is a rapidly evolving pandemic caused by the coronavirus Sars-CoV-2. Clinically manifest central nervous system symptoms have been described in COVID-19 patients and could be the consequence of commonly associated vascular pathology, but the detailed neuropathological sequelae remain largely unknown. A total of six cases, all positive for Sars-CoV-2, showed evidence of cerebral petechial hemorrhages and microthrombi at autopsy. Two out of six patients showed an elevated risk for disseminated intravascular coagulopathy according to current criteria and were excluded from further analysis. In the remaining four patients, the hemorrhages were most prominent at the grey and white matter junction of the neocortex, but were also found in the brainstem, deep grey matter structures and cerebellum. Two patients showed vascular intramural inflammatory infiltrates, consistent with Sars-CoV-2-associated endotheliitis, which was associated by elevated levels of the Sars-CoV-2 receptor ACE2 in the brain vasculature. Distribution and morphology of patchy brain microbleeds was clearly distinct from hypertension-related hemorrhage, critical illness-associated microbleeds and cerebral amyloid angiopathy, which was ruled out by immunohistochemistry. Cerebral microhemorrhages in COVID-19 patients could be a consequence of Sars- CoV-2-induced endotheliitis and more general vasculopathic changes and may correlate with an increased risk of vascular encephalopathy.


Subject(s)
COVID-19/complications , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/virology , Vasculitis, Central Nervous System/pathology , Vasculitis, Central Nervous System/virology , Aged , Aged, 80 and over , Endothelial Cells/pathology , Female , Humans , Male , Retrospective Studies , SARS-CoV-2
13.
J Allergy Clin Immunol ; 147(2): 545-557.e9, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-939006

ABSTRACT

BACKGROUND: Whereas severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody tests are increasingly being used to estimate the prevalence of SARS-CoV-2 infection, the determinants of these antibody responses remain unclear. OBJECTIVES: Our aim was to evaluate systemic and mucosal antibody responses toward SARS-CoV-2 in mild versus severe coronavirus disease 2019 (COVID-19) cases. METHODS: Using immunoassays specific for SARS-CoV-2 spike proteins, we determined SARS-CoV-2-specific IgA and IgG in sera and mucosal fluids of 2 cohorts, including SARS-CoV-2 PCR-positive patients (n = 64) and PCR-positive and PCR-negtive health care workers (n = 109). RESULTS: SARS-CoV-2-specific serum IgA titers in patients with mild COVID-19 were often transiently positive, whereas serum IgG titers remained negative or became positive 12 to 14 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers after symptom onset. Very high titers of SARS-CoV-2-specific serum IgA were correlated with severe acute respiratory distress syndrome. Interestingly, some health care workers with negative SARS-CoV-2-specific serum antibody titers showed SARS-CoV-2-specific IgA in mucosal fluids with virus-neutralizing capacity in some cases. SARS-CoV-2-specific IgA titers in nasal fluids were inversely correlated with age. CONCLUSIONS: Systemic antibody production against SARS-CoV-2 develops mainly in patients with severe COVID-19, with very high IgA titers seen in patients with severe acute respiratory distress syndrome, whereas mild disease may be associated with transient production of SARS-CoV-2-specific antibodies but may stimulate mucosal SARS-CoV-2-specific IgA secretion.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Mucous Membrane/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Saliva/immunology , Severity of Illness Index , Tears/immunology
15.
Journal of NeuroInterventional Surgery ; 12(7):1-42, 2020.
Article | CINAHL | ID: covidwho-616372

ABSTRACT

Background Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an acute illness termed coronavirus disease 2019 (COVID-19). Humoral immune responses likely play an important role in containing SARS-CoV-2, however, the determinants of SARS-CoV-2-specific antibody responses are unclear. Methods Using immunoassays specific for the SARS-CoV-2 spike protein, we determined SARS-CoV-2-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) in sera and mucosal fluids of two cohorts, including patients with quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR)-confirmed SARS-CoV-2 infection (n = 56;median age 61 years) with mild versus severe COVID-19, and SARS-CoV-2-exposed healthcare workers (n = 109;median age 36 years) with or without symptoms and tested negative or positive by RT-qPCR. Findings On average, SARS-CoV-2-specific serum IgA titers in mild COVID-19 cases became positive eight days after symptom onset and were often transient, whereas serum IgG levels remained negative or reached positive values 9--10 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers as a function of duration since symptom onset, independent of patient age and comorbidities. Very high levels of SARS-CoV-2-specific serum IgA correlated with severe acute respiratory distress syndrome (ARDS). Interestingly, some of the SARS-CoV-2-exposed healthcare workers with negative SARS-CoV-2-specific IgA and IgG serum titers had detectable SARS-CoV-2-specific IgA antibodies in their nasal fluids and tears. Moreover, SARS-CoV-2-specific IgA levels in nasal fluids of these healthcare workers were inversely correlated with patient age. Interpretation These data show that systemic IgA and IgG production against SARS-CoV-2 develops mainly in severe COVID-19, with very high IgA levels seen in patients with severe ARDS, whereas mild disease may be associated with transient serum titers of SARS-CoV-2-specific antibodies but stimulate mucosal SARS-CoV-2-specific IgA secretion. The findings suggest four grades of antibody responses dependent on COVID-19 severity.

SELECTION OF CITATIONS
SEARCH DETAIL